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Motivation

« Generating waveforms can be expensive, time-consuming, and a bottleneck for
practical data analysis applications

— Template bank generation for gravitational wave searches (“curse of dimensionality”)
— Multiple waveform queries for parameter estimation (e.g., with stochastic methods)
— Parameter space mapping, exploration, and discovery (i.e., science!)

— Accessibility to broader scientific communities and the public

« Goals: To cheaply and quickly predict gravitational waveforms that are otherwise
prohibitively expensive to mass-produce.

— Numerical relativity waveforms of compact binary coalescences
+ Can take weeks to months to complete one simulation and corresponding waveform
+ 3 points only in each of the 7 parameter dimensions requires 2187 simulations!

— Extreme Mass Ratio Inspirals (EMRIS)

— Continuous gravitational waves
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Reduced-Order Modeling (ROM)

Overview
Reduced Basis Compression in parameter space
Offline
Emplrlcgl Dual compression in time/frequency
Interpolation
. Reduced-Order
Online Surrogate @~ @————————————- >
Quadratures
Rapid waveform generation Rapid integral evaluation
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Reduced Basis
Basic ldea

Can find a linear approximation space that is nearly optimal

Set of waveforms F "Training space"

q

1) Choose any parameter,
e1 = h(q1), C1 ={e1}

2) Greedy search - Find the parameter
that maximizes:
— — Output:
’ ’hq h (hq) ‘ " h (hQ) “ <617 hq> 1) “Mostrelevant” parameters and waveforms
2) A nested/hierarchical basis
3) Maximum projection errors
Cy ={ey, e}, C1 C Oy converge exponentially

3) Orthogonalization to get basis vector ez
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Reduced Basis

. Blackman et al (2014)
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— AOPN waveform has a reduced basis with one element = 10
when parameterizing by phase instead of frequency S L0
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« The greedy algorithm is highly flexible and 10° 10" 102 0 102030405060 70

Basis size Basis size

can adapt to many different types of strategies
— Randomly resample the training set after each iteration [Blackman et al (2014)]

— Use an error metric that is suitable to the problem and parameterization

— Divide and conquer the training space (with random resampling) [Galley (unpublished)]

« Waveform representation by a reduced basis is robust to different detector PSDs
[Field et al (2011)]

 Even if target ROM accuracy is small, it is typically useful to build the Reduced Basis
with a much higher accuracy.

* Lower-accuracy waveform models (e.g., Phenom*, *EOB¥*) are helpful to inform for
which parameters to run expensive simulations [siackman et al (2015)]

— Side-effect price to pay: More parameters tend to be selected than are actually needed in the end.
(EOBNRHMvV2 implied 22 simulations where the actual number is about 7.)
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Barrault et al (2004)

Empirical Interpolation ey ot (o0
Basic Idea

* Areduced basis is built to accurately span the waveform space
— Therefore, all functions and functionals of waveforms can be accurately represented by the reduced basis
— Including an interpolant built from the empirically found reduced basis

«  Empirical interpolation is essentially the standard interpolation problem but constructed using the
application-specific reduced basis instead of a generic basis (e.g., Chebyshev polynomials)
— Interpolation nodes are selected by another greedy algorithm that minimizes the interpolation error

«  Empirical interpolation errors are provably proportional to the maximum projection errors of the

reduced basis.
— In ROMs to date, empirical interpolation is within ~100x of the reduced basis representation error.
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Surrogate
Basic Idea

« A‘“grid” of points in parameter space and physical (i.e., time/frequency) space is built for the
features of the specific waveform family by RB and EIM

« Surrogate is constructed by fitting for the parameter variation at each empirical interpolation node
(e.g., time)
— (show equation), (highlight speed-up relative to nominal waveform generation times)
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Reduced-Order Quadratures
Basic ldea

» (Brief overview of what it is)
« (Parameter estimation applications, even for NR waveforms via its surrogate)

* (Mention small start-up cost before online stage)

8 jpl.nasa.gov



Results

Post-Newtonian inspirals
— (non-spinning reduced basis)
— (non-precessing reduced basis)
— (quasi-normal mode ringdowns reduced basis)

« Effective One-Body surrogates

— (EOBNRv2 and EOBNRHMv2)
Blackman, et al (2015)

—  (SEOBvV?) | | | | | | | | |
— (TEOB) 10t [ — SEOBNRv2 ]| 115 solar masses
1001 — EOBNRv2Z 1} — pull waveforms |
— Surrogate |} --. (2, 2) modes only

* Numerical Relativity surrogates
— (non-spinning BBH)

i\g‘\

— (non-precessing BBH) E 3Pl | SieszzesssIiiiziiii]

- (precessing B3H) o (0 NV AA A

* EMRI surrogates 50 100 150 200 250 300 5 i 6 810
Total mass (Solar masses) q

— (black hole Green’s function surrogate for scalar self-force)

« Continuous gravitational waves
— (that recent paper by the Scottish folks — reduced basis for timing models)

* Reduced-Order Quadratures
—  (look-up Priscilla’s papers to remind myself what they did exactly)
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Short-comings and mitigations

ROMs are accurate within the parameter domain of the training space
— Caution must be taken when extrapolating outside the training space
— Mitigations:
* Increase the domain of the training space
» Find a smoother waveform parameterization so that extrapolation is less severe

Reduced-Order Quadratures rely on the linearity of the waveform itself
— Smart (i.e., nonlinear) parameterizations for RB construction are not helpful here
— Mitigations:
* None
« But, one can still use a surrogate (if needed) for rapid waveform generation in the integrand

Offline generation of the training set can take a long time
— Example: Took 2 years to generate 22 NR training waveforms for the non-spinning BBH surrogate
— Mitigations:

» Progress with time: Took ~2 years to generate ( ) NR training waveforms for the
precessing BBH surrogate

» Adjust the training space sampling strategy for the Reduced Basis greedy algorithm

ROM works best on a training set of Cnfinity functions
— Can still work on C" functions but yields a less compact reduced basis (e.g., EOBNRv2)
— Mitigation:
« (fill this out in a clear way)
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Outlook

* (outlook)

« (rompy code public repo)
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